

WWW.CSiro.au

Regional Land Surface Evaporation using MODIS Remote Sensing

Dr Helen Cleugh CSIRO Marine and Atmospheric Research June 14, 2011

Acknowledgements to CSIRO Colleagues

- Ray Leuning and Yongqiang Zhang
- Edward King and WIRADA project on ET Intercomparisons

Context: Terrestrial carbon and water budget dynamics

- Goal: Fine space and time scale assessments of surface energy, water and carbon exchanges for regions and continents (10² – 10³ m; weekly to monthly)
- Flux station measurements are key, but not sufficient
 - Net CO₂ and water vapour fluxes highly resolved temporally, but spatially-averaged at smaller scales only (up to 10³ m)
- Advanced land surface models (e.g. CABLE) not yet adequate for near real time, operational delivery
- MODIS remote sensing provides space/time coverage
 - 250 m 1 km resolution; global domain; 8 and 16 days
 - But, measure radiances not fluxes

- Challenge: Develop an operational model for land surface evapotranspiration (λE, ET) that combines the continuity of flux tower measurements with space/time coverage of MODIS remote sensing
 - Inputs: routinely available over large regions, continents
 - Robust: estimated ET constrained and insensitive to attributes of multi-temporal remote sensing
 - Validated: using ET from a range of bioclimates and ecosystems
 - Simple algorithm: for routine operational use

Surface energy balance and land surface evaporation from remote sensing

Traditionally, the "aerodynamic" model is used:

$$\lambda E = A - H = A - \left[\rho c_p (T_{sA} - T_a) / R_a\right]$$

where T_{sA} and T_a : aerodynamic surface and air temperatures

Assumes equality of radiative and aerodynamic surface temperatures (i.e. $T_{sR} = T_{sA}$)

ET from Penman-Monteith

Penman-Monteith equation for surface evaporation:

$$\lambda E_{surface} = \frac{\varepsilon A + (\rho c_p / \gamma) D_a G_a}{\varepsilon + 1 + G_a / G_s}$$
(1)

- A = available energy
- $D_a =$ water vapour deficit
- G_a = aerodynamic conductance
- $G_s =$ surface conductance we model this
- $\lambda =$ latent heat of vaporisation
- $\mathcal{E} = s / \gamma$

ET from Penman-Monteith: Summary of Inputs

- Gridded meteorology (1 or 5 km) for the Australian continent from Bureau (daily)
 - Radiation
 - T and RH
 - Rainfall (where needed)
- MODIS remote sensing
 - Leaf Area Index: 8-day/1km MOD15A2 LAI product
 - Land Cover: Yearly/1km MOD12 land cover product
- Gridded annual albedo product
- Parameterisation and optimisation using:
 - Eddy fluxes from FluxNet
 - Catchment water balance in gauged catchments

Modelling surface conductance for landscapes using MODIS Leaf Area Index (LAI) product

2. Leuning et al (2008): Separating canopy and soil

$$\lambda E_{surface} = \lambda E_{canopy} + \lambda E_{soil}$$

 $\begin{cases} f \text{ varies from 0} \\ (dry) \text{ to 1 (wet)} \end{cases} \quad \lambda E_{soil} = f \frac{\varepsilon A_{soil}}{\varepsilon + 1} \quad A_{soil} = A \exp(-k_A L_{ai}) \end{cases}$ (3)

$$\lambda E_{canopy} = \frac{\varepsilon A_c + (\rho c_p / \gamma) D_a G_a}{\varepsilon + 1 + G_a / G_c}$$
(4)

$$G_{c} = \frac{g_{sx}}{k_{Q}} \ln \left[\frac{Q_{h} + Q_{50}}{Q_{h} \exp(-k_{Q}L_{ai}) + Q_{50}} \right] \left[\frac{1}{1 + D_{a} / D_{50}} \right]$$

stomatal light humidity deficit

(5)

(2)

Penman – Monteith – Leuning (PML) model for land surface evaporation

• Combine, rearrange and solve for surface conductance G_s

$$G_{s} = G_{c} \left[\frac{1 + \frac{\tau G_{a}}{(\varepsilon + 1)G_{c}} \left[f - \frac{(\varepsilon + 1)(1 - f)G_{c}}{G_{a}} \right] + \frac{G_{a}}{\varepsilon G_{i}}}{1 - \tau \left[f - \frac{(\varepsilon + 1)(1 - f)G_{c}}{G_{a}} \right] + \frac{G_{a}}{\varepsilon G_{i}}} \right]$$

• 6 parameters g_{sx} , f, k_A , k_Q , Q_{50} , D_{50}

but no significant loss in performance if all held constant except for g_{sx} , f which are optimised using daily fluxes

Parameterise and validate PML model at 15 Fluxnet sites across a range of ecosystems and climates

 E_{meas} = daily ET measured at flux towers

 E_{RS} = PML model (2-parameter for G_s) and MODIS L_{ai}

<u>3. Zhang et al (2008)</u>: Modelled E_{RS} for Murray Darling Basin (MDB)

- Optimise g_{sx} , f by minimizing difference between mean annual E_{PML} and E_{WB}
- Single value for each rainfall zone in the MDB
- E_{WB} are 5-year averages using water balance for 120 gauged catchments

5-year average E_{RS} vs E_{WB} for 135 catchments

Zhang et al (2008)

5-year average E_{RS} vs E_{WB} for 120 gauged catchments in MDB (Zhang et al, 2008)

Ewa (mm/yr)

Performance comparable to calibrated rainfall runoff model (SIMHYD) and better than Budyko climatological approach

and measured vs modelled runoff R_{RS} and R_{SIMHYD}

Annual runoff from SIMHYD, a rainfall – runoff model calibrated using runoff from gauged catchments

4. Zhang et al (2010): Including soil water constraint and finer scale information

- PML model overestimates ET in some semiarid and arid catchments
- Improve parameterisation of g_{sx} and f:
 - Using water balance to constrain
 - Better knowledge of their spatial distribution
- Optimise g_{sx} for each grid cell by optimising PML against a calibrated water balance model (Budyko-style, Fu model)

Concluding Comments

- ET measurements can improve estimates of catchment yield in ungauged basins and water availability
 - Energy constraint
 - Largest term and spatially-averaged
- Developed an approach combining flux measurements, Penman Monteith model and remote sensing
 - Energy constraint and robust
 - Biophysical model for Gs using remote sensing
 - Reasonable performance for ET and runoff

• Further work:

- Remotely-sensed measurements to quantify f
- Carbon fluxes (GPP, NEE)

